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1. Modular Exponentiation

The following function performs modular exponentiation. It computes
ak mod n and outputs the answer. Two lines are missing: complete
the code:

def MyPower(a,k,n):
K = bin(k)[2:]
A = a % n
c = 1
if int(K[0])==1:

c = ????
for j in range(1,len(K)):

c = (c∧2) % n
if int(K[j])==1:

c = ????
return c

Copy and paste the code into SAGE. This code will be reused in
later exercises.
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2. A Side Channel Attack on RSA

We recall that RSA encryption is defined by c = me mod N . Bob’s
RSA implementation has public key (N, e) = (183181, 5) where N is
a product of two primes p and q. He receives a ciphertext c from Al-
ice. Bob uses the following square-and-multiply algorithm to compute
m = cd mod N .

def BobPower(a,k,n):
K = bin(k)[2:] # K is binary expansion of k,
A = a % n # with the most significant bit
c = 1 #stored in K[0]
if int(K[0])==1:

c = (c*A) % n #modular multiplication here
for j in range(1,len(K)):

c = (c∧2) % n #modular squaring is cheap
if int(K[j])==1:

c = (c*A) % n #modular multiplication uses
return c #more power
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Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 1.

(a) The power usage of Bob’s CPU as he decrypts the ciphertext is
given in the graph shown. What value for the decryption exponent
d is suggested by the power usage graph?

(b) Using the values of d, e and N , can we compute p and q?
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3. Primality Testing

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Click here for a reminder square-and-multiply algorithms.

Exercise 2.

(a) Create a function ‘MyPower’ which takes inputs a, k and n, and
computes ak mod n using a square-and-multiply algorithm.

(b) In the Fermat primality test, we test whether a number n is prime
by computing an−1 mod n and then checking whether the result
is equal to 1. If the result is not 1, then the number is not prime!
Using your function, and the is prime function, find all of the
composite numbers between 2 and 2000 that pass the Fermat test
with a = 2. Repeat for a = 5.

(c) Using your answer to the previous question, or otherwise, find all
of the Carmichael numbers between 2 and 2000. Hint: remember
that if gcd(a, n) > 1, then n does not need to pass the Fermat test
to base a to be a Carmichael number.
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(d) Test any Carmichael numbers that you have found using the Miller-
Rabin test, again with a = 2 and a = 5. Do any of them pass the
test?

(e) (Bonus Question) Find a number larger than 5000 which passes
the Fermat test with base a, but fails the Miller-Rabin test to base
a. Using the sequence of values from the Miller-Rabin test, can
you factor the number without using trial division?
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4. Rabin Cryptosystem

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Exercise 3. Let p, q be two large primes which are congruent to 3
modulo 4. Set N = pq.

(a) Let c ≡ m2 ∈ Z/pZ. Set m′ ≡ c(p+1)/4 mod p. What is (m′)2?
(b) The Rabin cryptosystem encrypts a message m mod N by setting

c ≡ m2 mod N . Suppose that you know p, q. Use the first part
of the question to describe how to decrypt a message. Hint: use
the Chinese Remainder Theorem.

(c) With a partner, generate two primes which are suitable for the
Rabin cryptosystem. Now, using SAGE, write programs which
can encrypt and decrypt a message. The CRT command is very
useful for this.
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5. Continued Fractions and RSA

For any real number r, its continued fraction representation is a
(possibly infinite) sequence of integers [q0; q1, q2, . . .] such that

r = q0 +
1

q1 + 1
q2+

1

q3+ 1
q4+...

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 4.

(a) (Bonus Question) If r = a
b , show that the continued fraction repre-

sentation of r can be computed with Euclid’s Algorithm on (a, b).
(b) SAGE contains functions for computing continued fraction expan-

sions. Try “a = continued fraction(pi); a”.
(c) By truncating the continued fraction expansion of a number, we

can obtain a rational approximation to that number. The ratio-
nal number An/Bn representing the continued fraction expansion
[q0; q1, . . . , qn] is called the nth convergent. Try “a.convergent(3)”,
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and compare the decimal expansion of this number to that of π.
To how many decimal places do the two values agree?

(d) (Bonus Question) It is known that if |r−m/n| < 1/2n2, then m/n
is a convergent to r. For an RSA public/private key-pair, show
that if N = pq with q < p < 2q, and d < N1/4/3, then k/d is a
convergent to e/N , where ed− 1 = kφ(N).

(e) Let N = 90581, e = 17993 be an RSA public-key. Use continued
fractions to find d.
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Solutions to Exercises

Exercise 1(a) When computing cd mod N , the square-and-multiply
algorithm will either do a squaring operation, or a squaring operation
then a multiplication, depending on whether each bit in the binary
representation of d is a 0 or a 1. The multiplication is usually more
computationally intensive. This means that we can read off the binary
representation of d straight from the graph.

This gives us d = 72357. �
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Exercise 1(b) Since N = pq, we know that φ(N) = (p− 1)(q− 1) =
pq− p− q+ 1. Thus p+ q = N −φ(N) + 1. Furthermore, in RSA, we
know that ed = 1 mod φ(N). Therefore, ed − 1 = kφ(N) for some
positive integer k.

Now, consider the quadratic equation

X2−
(
N − ed− 1

k
+ 1

)
X+N = X2−(p+q)X+pq = (X−p)(X−q) = 0

We already know N , e and d. If we guess values of k, we can try
to use the quadratic formula to obtain p and q. Guessing k = 2 gives
us X2 − 2290X + 183181, and then we recover p = 2207 and q = 83
from the quadratic formula.

The disadvantage of this approach is that it seems to involve guess-
ing k and we might have given up if k was large and prime.

Here is a second solution. We know that ed − 1 = kφ(n). For
any a with gcd(a,N) > 1, we have aφ(N) ≡ 1 mod N . Substituting
in the values of e and d, we know that a361784 ≡ 1 mod N . Taking
inspiration from the Miller-Rabin test, we can use this fact to try and
find square roots of 1 not congruent to ±1 mod N .
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We divide 361784 by 2 as many times as possible, to get 45223.
Now, we pick a random value of a between 1 and N − 1. We check
that gcd(a,N) = 1 (if not, we have already factored N). Then, we
raise to the power 45223 mod N , and then square repeatedly, hoping
that we get a non-trivial square-root. For example, with a = 2, we
get A = 97109, and find that A2 ≡ 1 mod N . Therefore, (A +
1)(A− 1) ≡ 0 mod N , and gcd(A± 1, N) give factors of N . Finally,
gcd(97110, 183181) = 83 and 183181 = 83× 2207.

It can be shown, using the Chinese Remainder Theorem, that this
approach has a success probability of roughly 1

2 , in the case that N
is a product of two distinct primes. �

JJ II J I Back



Solutions to Exercises 13

Exercise 2(a) The following code implements the square-and-multiply
Algorithm.

def MyPower(a,k,n):
K = bin(k)[2:]
A = a % n
c = (A∧ int(K[0]))
for j in range(1,len(K)):

c = (c∧ 2) % n
c = c*(A∧ int(K[j])) % n

return c
�
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Exercise 2(b) The following code finds the answer for a = 2. For
a = 2 you should get 341, 561, 645, 1105, 1387, 1729, 1905. For a = 5,
you should get 4, 124, 217, 561, 781, 1541, 1729, 1891.

for i in range(2,2000):
if is prime(i)==False and MyPower(2,i-1,i)==1:

print(i)
�
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Exercise 2(c) The Carmichael numbers between 2 and 2000 are
561, 1105, 1729. �
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Exercise 2(d) The following code carries out the Miller-Rabin test
to base a. You should find that none pass with either a = 2 or a = 5.

def StrongTest(a,n):
if (n%2)==0:

return ’fail’
b = n-1
k=0

while (b%2)==0:
b = b/2
k = k+1

A = MyPower(a,b,n)
if A == 1 or A == (n-1):

return ’pass’

for i in range(0,k):
A = MyPower(A,2,n)
if A == (n-1):

return ’pass’

(code continues on the next page)
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if A == 1:
return ’fail’

return ’fail’
�
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Exercise 2(e) The number 5461 passes the Fermat test with base
a = 2, but fails the Miller-Rabin test. From this, we can deduce
that the sequence of values produced by the Miller-Rabin test ends
in 1, but does not contain −1. Therefore, the sequence gives us a
square-root 128 of 1 modulo 5461 which is not ±1. We have 1282 ≡ 1
mod 5461. Rearranging, (128 + 1)(128 − 1) ≡ 0 mod 5461, but 128
is not congruent to ±1. Therefore, gcd(129, 5461) and gcd(127, 5461)
give non-trivial factors of 5461. We find that 5461 = 43× 127. �
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Exercise 3(a) By Fermat’s Little Theorem, we have that (m′)2 ≡ c
mod p. �
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Exercise 3(b) We can compute cp ≡ c mod p and cq ≡ c mod q.
Using the first part of the question, we can compute the square roots
mp with m2

p = cp mod p and m2
q = cq mod q. Finally, we can use the

Chinese Remainder Theorem to compute m mod N from mp mod p
and mq mod q. �
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Exercise 4(a) Using Euclid’s Algorithm, we find integers r0, r1, r2, . . .
such that:
a = q0b+ r0
b = q1r0 + r1
r0 = q2r1 + r2
...
rn−1 = qn+1rn

We substitute the expression for a into a
b and rear-

range to get
a

b
=
q0b+ r0

b
= q0 +

r0
b

= q0 +
1
b
r0

We can then substitute the expression for b and rearrange in a similar
way to get

a

b
= q0 +

1

q1 + 1
r0
r1

Repeating the same idea, we eventually arrive at

r = q0 +
1

q1 + 1
q2+

1

q3+ 1
q4+...+ 1

qn+1
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�
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Exercise 4(b) SAGE should display ”[3; 7, 15, 1, 292, 1, 1, 1, 2, 1,
3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...]”. �
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Exercise 4(c) The third convergent to π is 355/113, which approxi-
mates π to 6 decimal places. �
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Exercise 4(e) The first convergent is 1/5, which shows that d = 5.
�

JJ II J I Back


	1 Modular Exponentiation
	2 A Side Channel Attack on RSA
	3 Primality Testing
	4 Rabin Cryptosystem
	5 Continued Fractions and RSA
	 Solutions to Exercises



